

EA-6B Total Ownership **Cost Reduction** Plan for TOC/CAIV Workshop

Todd Balazs Deputy PMA-234A

4 November 1999

Program Executive Officer RADM J.A. Cook PEO(T)

Resource Sponsor CDR Casey Collins N880C3

EA-6B Program Manager CAPT J. Scheffler PMA-234

Outline

- Background
- Goals
- Strategy
- Baseline Cost
- Initiatives
- Summary

Program Background

EA-6B is DOD's Sole RADAR Jamming Support Aircraft

Background

- 170 A/C manufactured
- 1st A/C delivered in 1971
- Last production aircraft delivered in 1991
- 1995 PAA increased from 80 to 104 Aircraft
- 1998 complete standup of 5 new squadrons
- 1998 EF-111's retire
- 1999 will see over 100
 A/C in active inventory

EA-6B Prowler Mission

Deny, delay, degrade the acquisition of friendly forces by enemy air defense systems

4 Pilot Program Forum Working Papers

EA-6B Program Goals for this Pilot Program

- Reduce Total Operating and Support Cost
- Improve readiness
- Reduce the escalation rate of O&S costs
- Identify <u>existing hurdles to leadership</u> to improve ability to accomplish above

PEO(T)

Cost Reduction Strategy

- Develop a Total Ownership Cost baseline
 - Project future costs based on historical data, trends and anticipated use
- Seek greater level of visibility into operating and support costs
- Identify cost drivers
- Identify actions to reduce cost drivers
- Seek investment funding
 - NAVAIR Affordable Readiness Initiatives (ARIs)
 - Logistic Engineering Change Proposals
 - Department of the Navy Cost Reduction Effectiveness Improvement Council (CREIC)
 - Execution Funds
 - Commercial Operations & Support Savings Initiative (COSSI)
 - Modernization Programs
 - Pilot Program Projects
 - Combination of above

EA-6B Aging Aircraft Effects

- Aircraft Aging is Driving Additional Maintenance Requirements
- Burden on Navy "O" and "I" Personnel Increasing Significantly
- **AVDLR & Support Supply Demand Increasing**
- Flight Hour Program Funding Profile Leads to Many Work Arounds To Support Mission Requirements
- Squadron Manning Consistently Less than Increasing Requirements Adversely Impacts Personnel Retention Rates

EA-6B Total Ownership Cost and Support Baseline (Before Reduction Initiatives)

Assumptions

- 2015 is period end date
- Annual inventory of 123 A/C
- Annual operating hours based on OP-20, CNO Flying Hour Program
- Aircraft aging factors applied to out-year factors
- Projected surcharges applied to Aviation Depot Level Program (AVDLR)

EA-6B Cost Components

TOTAL OWNERSHIP AND SUPPORT COST Constant FY 1999 \$

Projections based on 348.2 Flt. Hrs. per A/C per year. Average cost of \$12,992 per Flt. Hr.

EA-6B Baseline for DSAC Goals

Constant FY 1997 \$

- 10 May 1999 USD (A&T) memo states "O&S reduction goal excluding fuel and manpower"
- CAIG O&S Manual 1992 "Exclude modifications undertaken to provide additional operational capability not called for in the original design or performance specification"
- **DSAC Goals**
 - 7% by 2000
 - 10% by 2001
 - 20% by 2005

EA-6B DSAC Logistic Support Cost Elements

TOTAL DSAC LOGISTICS SUPPORT COST Constant FY 1997 \$

Projections based on 348.2 Flt. Hrs. per A/C per year. Average cost of \$12,504 per Flt. Hr.

Major Components

- **Aviation Depot Level** Repairables (AVDLR)
- **Depot Maintenance**
 - A/C rework
 - **Engine rework**
 - Transmitter rework
- **Support Supplies**
 - **Maintenance material**
 - Flight clothing
 - Safety equipment

Although DSAC goals exclude manpower, significant reductions in workload are being quantified in terms of hours/work years eliminated

EA-6B DSAC Operating and Support Cost Goals

TOTAL DSAC LOGISTICS SUPPORT COST Constant FY 1997 \$K

- **DSAC** goals applied to cost projections based on current operating force
 - PAA increased from 80 to 104 A/C
 - **DOD Sole Radar Support Jammer**

Actions

EA-6B Primary AVDLR Cost **Components**

EA-6B: AN/ASN-130A Upgrade (#2 AVDLR cost driver)

AN/ASN-172 Embedded Global Positioning System/Inertial Navigation System (EGI) will replace the obsolete AN/ASN-130A. ASN-130 remains as the secondary navigation system in Blk-89A and ICAP III aircraft.

Goals:

- 1. Increase reliability
- 2. Decrease Maintenance man-hours
- 3. Decrease O & S costs through aircraft life
- 3. Installation concurrent with major A/C Mod

FUNDING (\$M)	FUN	DIN	G	(\$M))
---------------	-----	-----	---	-------	---

	<u>00</u>	<u>01</u>	<u>02</u>	<u>03</u>	<u>04</u>	<u>05</u>	Outyrs
Funded	0	0	0	0	0	0	0
<u>Unfunded</u>	2	.5	3	3	2	.3	0
Total	2	.5	3	3	2	.3	0

Total FYDP Cost: \$10M

Funded: \$0M Unfunded: \$10M

Total Cost: \$10M

Return on Investment

- Avoidance: \$2.5/3.0/3.4M in <u>annual</u> maintenance costs due to replacement of AN/ASN-130
- Integrate 2-Level Maintenance Concept (O to D)
- Eliminate I-Level Maintenance workload
- Utilize Contractor's warranty; No Depot level Maintenance costs for first 5 years
- Readiness Improvement: 3.9% in PMC, 2.6% in NMC

Risk

- Technical: Low. Proven system in EA-6B. Simple integration.
- Financial: Low. Current contracts in place with contractor

Payback Period

Program cost avoidance begins as soon as AN/ASN-172 is installed with full investment payback realized by FY06

15 Pilot Program Forum Working Papers

ASN-130 is #2 for overall aircraft AVDLR costs for CY-98

ASN-172 (EGI) Replacement

- O to D Maintenance Concept
- Contractor warranty for 1st five years
- Recovers PMA-209 sunk costs associated with EGI procurements (excess EGIs)
- Built-in test available which eliminates numerous O-level Ops check man-hours
- Simple integration to EA-6B Navigation system
- Weight Reduction (18 lbs vs 35 lbs)
- Requires only 30% of the power

16 72999 Pilot Program Forum Working Papers

EA-6B AN/ASN-130A Metrics

17 Pilot Program Forum Working Papers

EA-6B: APS-130 Radar Upgrade (#6 AVDLR cost driver)

Available alternative will replace obsolete APS-130 Radar which has historically been an aircraft readiness degrader.

Goals:

- 1. Increase radar reliability 20 times
- 2. Procure, integrate, test and install replacement radar
- 3. Commence installation 2001

FUNDING (\$M)

	<u>00</u>	<u>01</u>	<u>02</u>	<u>03</u>	<u>04</u>	<u>05</u>	Outyrs
Funded	0	0	0	0	0	0	0
<u>Unfunded</u>	3	10	9	0	0	0	0
Total	3	10	9	0	0	0	0

Total FYDP Cost: \$22M

Funded: \$0M Unfunded: \$22M

Total Cost: \$22M

Return on Investment

- Avoidance: \$46/54/62M in overall program costs
- Higher reliability and reduced maintenance actions with installation of modern radar
- AVDLR avoidance of ~ \$1M/year
- Decreased PMC rate by 11%
- Increased safety via enhanced Aircrew situational awareness in all weather environments

Risk

- Technical: Low. Modern technology radars available
- Financial: Low, will require establishing effort with contractor

Payback Period

Program cost avoidance begins as soon as new radars are installed with full investment payback realized by FY02

EA-6BAircraft Total AVDLR Cost CY-98

Pilot Program Forum Working Papers

EA-6B APS-130 Radar Metrics

Retirement of A-6E

EA-6B APS-130 Radar Upgrade TOC Initiative

EA-6B: J52 Engine

Decrease Operating and Support Costs of J52 Engine by increasing engine and component reliability.

Goals:

- 1. Increase Major Engine Inspection (MEI) Interval from 1100 to 1500 hours
- 2. Increase J52 reliability from 482 to 800 hours
- 3. Reduce safety risk associated with current turbine exhaust case

Requirement to meet Goals: 6 engine modifications - turbine exhaust cases, oil tubes, inlet guide vanes, oil leaks, 6th stage stator, and 1st stage turbine vanes

FUNDING (\$M)

	<u>00</u>	01	02	<u>03</u>	04	<u>05</u>	Outyrs
Funded	0	0	0	0	0	0	0
Unfunded	9	9	9	.3	.3	.2	0
Total	9	9	9	.3	.3	.2	0

Total FYDP Cost: \$27.8

Funded: \$0M Unfunded: \$27.8M

Total Cost: \$27.8M

Return on Investment

- Avoidance: \$7/8/10M in <u>annual</u> maintenance costs due to installation of engine upgrades
- Decreased unscheduled engine removals and Major Engine Inspections
- Readiness improvement: Decreased aircraft down time for engines

Risk

- Technical: Low. Modification designs and val/ver are complete
- Financial: Low. Current contracts in place with Contractor

Payback Period

Program cost avoidance begins as soon as engine upgrades are installed with full investment payback realized by FY05.

Timeline to Higher Reliability:

	00	01	02	03
Build 1st Engine	X - F	leet Leader to	1500 MEI -	
Turbine Exh Case	X			X
Oil Tubes	X			X
IGVs		X		
Oil Leak			X	
6th Stage Stator	X			X
1st Stage Turbine				X
All engines 1500 ME	[X

Pilot Program Forum Working Papers

24 7/2999 Pilot Program Forum Working Papers

FY-00 TOC Initiatives Proposed

PROPOSED				MAN-HOUR
INITIATIVE	ROI	INVESTMENT	AVOIDANCE	SAVINGS/YEAR
J-52 Engine Reliability				
Initiative	3.3	\$28M	\$87M	23,450
AN/APS-130 Radar	2.4	\$22M	\$53M	29,000
ASW-41 Air				
Navigation Computer	2.7	\$16M	\$43M	11,900
EA-6B ASN-172	3.9	\$10M	\$39M	40,560
Flight Control				
Surfaces	3.4	\$23M	\$78M	TBD
Low Band Transmitter				
Acceleration	1.9	\$64M	\$120M	TBD
EA-6B Airborne Air				
Removal Device	15.3	\$1.8M	\$27M	27,000

ICAP III Upgrade (ACAT II)

- **ACAT II Program**
- **EMD**
- **IOC 2004**
- **Replaces 70 80** WRAs with 20
- **Increases Reliability** of ICAP III System 7 hours to 20 hours

ICAP III PROVIDES SELECTIVE REACTIVE JAMMING CAPABILITY, ACCURATE EMITTER GEOLOCATION, AND FULL AZIMUTH COVERAGE TO COUNTER THREATS THROUGH 2015.

EA-6B Depot Maintenance

Constant FY 1999 \$K

Actions to reduce Depot Maintenance

Aircraft ≈ 15 Months → 10 Months

- **SDLM Turn-Around-Times (TAT)** Times reductions based on capital equipment investments/ personnel skills
- **Reliability Centered Maintenance** (RCM)
- Combine SDLM with A/C modifications
- **Improved Supply Support**
 - DLA Weapon System Manager
 - Supply Initiatives
- Stabilized quantities across FYDP
- **Annual review of SDLM** specification

Engine

- Reduce TAT from 320 → 111 days
- Reduced test cell reject rate from 70% to 30%
- **Incorporation of power plant** changes
- **Improved Supply Support**
- Floor space
- **Potential J-52 TOC**

Other Areas Being Pursued

Initiative

- Virtual Prime Vendor support with DLA
 - J-52 Engine/EA-6B/F-14
 - Decrease cycle time
 - Better forecasts of requirement
 - Improve maintenance and production planning
- Reliability Centered Maintenance/Integrated Maintenance Concept
 - Adjust preventive maintenance cycles to improve A/C material condition
 - Integrate maintenance activities to maximize A/C availability
- Modernization programs
 - Blk-82-89As
 - Blk-89-89As
 - ICAP III
 - Band 9/10 Transmitter
 - Low Band Transmitter
 - Universal Exciter Upgrade
- Integrated Data Environment
 - Prototype to establish data infrastructure
 - Facilitates Team tools and data

Funding Status
Being Studied

G

- Phase Y
- LRIP G
- LRIP → G
- EMD G
- Production ---
- EMD → Y
- Production G

(KOSOVO Supplemental)

(TOC Initiative/POM Issue)

(KOSOVO Supplemental)

EA-6B Total DSAC **Logistics Support Cost**

Constant FY 1997 \$K

EA-6B Aircraft Composite Readiness Degraders Ranking

<u>Degrader</u> <u>Issue</u> <u>Action</u>

J-52 Engine

MLG Doors

Canopies

Landing Gear

Air Nav computer

EFIS displays

EFIS control panel

Slats

Hydraulic Pumps

Truss Assembly

\$ / Components

AFB / Sub-assemblies

AFB / Sub-assemblies

Consumables

Obsolescence/Carcass

Low MTBR

Low MTBR

Tired Iron

MTBOF

Stress cracking

30 Pilot Program Forum Working Papers

R&M MODS identified

New procurement

NADEP manufacture/ECP

New procurement/SRC

ASW-41 support/ARI/TOC

Reliable HVPS implemented

Spares/RAMEC/Canopy/Rainseal

New Procurement

Hyd servicing ECP/ARI/TOC

Fatigue test/Redesign

Measures

31 72999 Pilot Program Forum Working Papers

Hurdles/Challenges

- 10 USC 2469 Code prevents moving more than \$3M worth of workload out of a depot. **Drafting legislative proposal.**
- Colorless Appropriation PEO approval during execution year
- Ability to mix/reprogram BA-4 and BA-1 O&MN accounts

Lessons Learned

- Cost saving/avoidance issues
- Trends are more significant than absolute \$\$\$
- Baseline difficult to establish and maintain
- Interrelationships of cost elements difficult to understand
- Saving O&S Costs starts with initial design which includes Logistic Support System
- Better luck with low investment high return initiatives
- Quit initiatives with low payoffs early
- Manage resources carefully

Summary

- EA-6B is a <u>National Asset!</u>
- Stretch goals difficult to accomplish for a legacy platform.
- RTOC initiatives are necessary to improve readiness and material conditions of the A/C